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ABSTRACT 

 

This study employs machine learning to optimize the 

electromagnetic field between two microwave sources 

in a heating cavity, as heating speed is dependent on 

electromagnetic field strength. We use Ansys HFSS to 

analyze parameters such as the placement of magnetrons, 

their phase, the use of WR340 waveguides, the 

waveguide's direction, and the microwave source 

frequency. These adjustable parameters, referred to as 

"points," are optimized using a multi-model Surrogate 

model to maximize electromagnetic field intensity. The 

model iteratively exchanges data with Ansys, generating 

and testing candidate solutions. Suboptimal outcomes 

are integrated back into the dataset for model refinement. 

To balance exploration and exploitation, the model uses 

three sampling methods over five iterations—three local, 

one medium, and one global. After 1,036 numerical 

analyses, the optimal electromagnetic field solution 

found was 159,645 V/m.  

Keywords: global optimization, surrogate model, Ansys 

HFSS. 

 

1. INTRODUCTION 

 

With the rise of computer modeling and advanced 

simulation in industry, Expensive Black-Box 

Optimization Problems (EBOP) have become prevalent. 

These problems are often multimodal and 

computationally intensive, making traditional methods 

like genetic algorithms costly due to extensive 

evaluations. Surrogate-based Optimization (SBO) 

addresses these challenges by using surrogate models to 

predict and reduce the need for expensive computations, 

efficiently focusing on promising regions for global 

optimum solutions. 

SBO generally involves three steps: a) selecting 

initial sample points using Design of Experiments 

(DoE); b) building surrogate models; and c) updating 

the models with new promising points. DoE methods 

include Random, Factorial, and Latin Hypercube 

sampling. Various surrogate models like Kriging, Radial 

Basis Function (RBF), and Kernel Partial Least Squares 

(KPLS) offer unique capabilities for optimization. 

Combining multiple surrogate models, known as 

Multiple Surrogate-Based Global Optimization (MSGO), 

enhances efficiency, accuracy, and robustness. 

Balancing global exploration and local exploitation is 

key in SBO. Effective Infill Criteria help find this 

balance, ensuring efficient optimization by targeting 

promising regions while avoiding unnecessary 

computations. 

In industrial applications like designing microwave 

heating cavities, precise microwave source 

configuration is challenging and costly with traditional 

methods. We propose the Surrogate-based 

Configuration Global Optimization (SCGO) method, 

using Ansys HFSS for simulation and MSGO to find 

optimal configurations. Our multi-infill criteria 

approach improves efficiency by alternately using 

various sampling methods to identify potential optimal 

areas. The main contributions of this study are: 

 Implementing MSGO combining Kriging and 

KPLS models. This method fully utilizes the 

unique advantages of both surrogate models to 

improve the accuracy and efficiency of 

optimization. 

 Designing Infill Criteria that include three 

different sampling methods, allowing us to more 

effectively identify and explore potential areas for 

global optimum solutions while balancing global 

exploration and local exploitation. 

 Experimentally demonstrating the effectiveness of 

our method in solving optimization problems of 

multiple microwave sources in microwave heating 

cavities, showing the feasibility and effectiveness 

of our method in practical applications. 

The rest of this paper is structured as follows: Section II 

introduces related works on global optimization. Section 

III details the proposed SCGO method. Section IV 

conducts tests related to SCGO. Finally, Section V 

presents conclusions and future work perspectives. 



 

2. RELATED WORK 

 

2.1. Surrogate-Based Optimization 

 

Surrogate-Based Optimization (SBO) methods have 

been extensively applied in solving high computational 

cost optimization problems. SBO reduces the number of 

expensive objective function evaluations by creating a 

lower-cost surrogate model that approximates the true 

objective function [6]. Among these, Radial Basis 

Function (RBF) is a popular surrogate model, known for 

its ability to handle nonlinear problems [4]. The Kriging 

(KRG) model is another commonly used surrogate, 

appreciated for its interpolation characteristics and high 

predictive accuracy, especially in cases of sparse data 

[5]. Additionally, the Kernel Partial Least Squares 

(KPLS) model combines the advantages of kernel 

methods and partial least squares, making it particularly 

suitable for high-dimensional data analysis [10]. 

 

2.2. Combining Multiple Surrogate Models 

 

The approach of combining multiple surrogate models 

has gained widespread attention in recent years. This 

method aims to amalgamate the strengths of several 

models to enhance the efficiency and accuracy in 

solving complex optimization problems [12]. For 

instance, some studies have combined Kriging and 

Radial Basis Function (RBF) models, utilizing the high 

accuracy of Kriging in data interpolation and the 

capability of RBF in handling nonlinear issues [3]. On 

the other hand, the combination of Kriging models and 

Partial Least Squares (PLS) has also shown 

effectiveness in high-dimensional data analysis, 

benefiting from the dimension reduction and data 

compression capabilities of PLS [9]. 

Additionally, research indicates that combining 

multiple surrogate models not only improves prediction 

accuracy but also enhances the generalization capability 

of the model. This is particularly important for 

optimization problems with complex objective functions 

and multiple variables [8]. Therefore, the strategy of 

combining multiple surrogate models holds significant 

importance in practical applications, especially in 

industrial and engineering fields. 

 

2.3. Infill criteria 

 

To boost the predictive precision of surrogate models, 

incorporating new samples is essential. This approach, 

known as infill criteria or the adaptive sampling design 

technique, plays a crucial role in determining the next 

set of promising samples. The infill criteria aims to 

navigate the choice of new samples by drawing on the 

data gathered from the optimization process. It 

encompasses three strategies: exploitation, which targets 

areas near the global optimum to refine promising 

regions; exploration, which searches less sampled or 

uncertain areas, broadening the search scope; and a 

hybrid approach that combines both. 

In recent years, a diverse range of infill criteria has 

been devised for the selection of new sample points. 

The expected improvement [6] is the most well-known 

single-point criteria, which selects the next sampling 

point by balancing the exploration of unknown areas 

with the exploitation of promising regions based on 

Gaussian Process model predictions. Nonetheless, with 

the increasing complexity of global optimization 

problems, the EI method falls short in effectively 

addressing them. Consequently, [1], [2], [7], [11] design 

more complicate infill criteria to overcome those 

problems. For example, [11] applies multi-point infill 

sampling to update Kriging model. [2] adjusts the search 

space adaptively. 

 

3. METHOD AND FRAMEWORK 

 

3.1. Initial sampling 

 

SCGO begins by creating an initial set of samples using 

Design of Experiments (DoE) method. This collected 

sample data is then used to construct the first surrogate 

model. Design of Experiments (DoE) incorporates a 

variety of sampling techniques for effective exploration 

of the search space. Traditional DoE methods include 

Random sampling, which involves selecting samples 

randomly from the population to ensure equal selection 

probability for each sample; Factorial sampling, which 

examines all possible combinations of factors and levels 

in a systematic manner; and Latin Hypercube sampling, 

a strategy that divides each variable's range into 

intervals of equal probability and selects samples from 

these intervals to ensure a more uniform distribution 

across the range. In this framework, Latin Hypercube 

sampling is specifically chosen for initial point sampling 

to align with the goal of gaining insights from each 

section of the observation plane, thereby fitting our 

objectives perfectly. Following the generation of initial 

points, the data is simulated using Ansys HFSS. The 

outcome of this simulation is the measurement of 

electric intensity on the observation plane. Subsequently, 

the measured electric intensity at each point on the 

observation plane is subjected to averaging. The average 

electric intensity will be treated as label for the 

surrogate model. 

 

3.2. Build surrogate model 

 

Following the selection of an appropriate Design of 

Experiments (DoE) method and conducting simulations 

with Ansys HFSS, the next phase involves developing a 

surrogate model to replace the computationally 

demanding simulations. The surrogate model predicts 

the average electric field intensity, using 30 candidate 

points obtained through infill criteria. These predictions 

are then used to identify the most optimal point for 

further simulation in Ansys. 



In this project, we implement Multiple Surrogate-

Based Global Optimization (MSGO) methods, using the 

Kriging and Kernel Partial Least Squares (KPLS) 

models as surrogates. The Kriging model excels at 

interpolating unknown data by modeling spatial 

correlations, making it ideal for accurate predictions of 

unseen data. The KPLS model, which combines Kernel 

methods with Partial Least Squares (PLS), is effective 

for high-dimensional data, handling complex, non-linear 

relationships by reducing data dimensionality while 

retaining essential information. Both models are trained 

on data from the initial sampling stage. 

The multimodal approach leverages the unique 

strengths of each surrogate model, providing multiple 

perspectives to better understand data distribution. This 

enhances the analysis by capturing diverse aspects of 

the data, potentially revealing insights that a single 

model might miss. 

 

3.2. Infill criteria 

 

The limited quantity of initial points fails to sufficiently 

capture the breadth of the search space. Additionally, 

during the initial training phase of the surrogate models 

using data from the sampling stage, the models may not 

achieve optimal performance due to the inadequacy of 

training data. To increase understanding of the search 

space and enhance the predictive accuracy of these 

surrogate models, it's necessary to infill new sample 

points. The process of determining where to place these 

new sample points is known as infill criteria or adaptive 

sampling design method. This approach strategically 

selects additional sample locations to improve the 

model's understanding of the search space, thereby 

refining the model's accuracy and effectiveness in the 

global optimization process. 

In this project, we have proposed three distinct infill 

criteria to enhance the training of our surrogate models. 

These criteria are categorized as local sampling, 

medium sampling, and global sampling. Each of these 

sampling strategies is designed to target different 

aspects and scales within the search space, thereby 

providing a comprehensive approach to improve the 

accuracy and effectiveness of the surrogate models in 

global optimization tasks. 

 Global Sampling: In this strategy, we plan to 

randomly select thirty points across the entire 

search space. The primary objective of global 

sampling is to explore uncharted sections of the 

search space and to prevent premature 

convergence to local optima—a frequent 

challenge in optimization problems. By casting a 

wide net across the entire search area, the 

algorithm is less likely to become trapped in a 

suboptimal solution. This broad exploration aids 

in ensuring that potential global optima are not 

overlooked in the optimization process. 

 Medium Sampling: This strategy is separated into 

two parts to accommodate both continuous and 

discrete parameters in our dataset. For continuous 

parameters, we initiate the process by identifying 

the top ten electric intensity values from the 

dataset. Subsequently, we determine the upper and 

lower bounds for each continuous parameter. 

Sampling then occurs randomly within these 

defined bounds. In contrast, for discrete 

parameters, our approach involves randomly 

selecting a category. To illustrate, consider a 

simple dataset where each data point is 

represented as [frequency, phase, watts], with 

frequency being a discrete parameter (options 

being 3Hz, 2.45Hz, and 2Hz), and the others 

being continuous. For instance, if we have data 

points such as [3Hz, 180, 700], [3Hz, 63, 900], 

and [2.45Hz, 359, 875], the application of 

medium sampling would proceed as follows:      

1) For the first parameter (frequency), we 

randomly select from the available discrete 

options: 3Hz, 2.45Hz, or 2Hz. 

2) For the second parameter (phase), given that 

the upper bound is 359 and the lower bound 

is 63, we sample randomly within this range, 

say between 63 and 359. 

Fig.2 Model Architecture 

Fig.1 Framework 



3) Similarly, for the third parameter (watts), 

following the upper and lower bounds from 

the data (700 to 900), we randomly sample 

within this range. 

Through this method, medium sampling 

effectively covers a mid-range scope of the search 

space, balancing exploration and exploitation by 

focusing on areas around the identified high-

performing parameters. 

 Local Sampling: This approach begins with the 

selection of the top ten electric intensity values 

from the dataset. Following this, we make slight 

modifications to each of these data points three 

times. For example, for a degree parameter, we 

randomly increase or decrease its value by 10 

degrees. As a result of these modifications, we 

generate a total of thirty new data points. The 

primary objective of the local sampling strategy is 

to exploit local optima in the search space. By 

making minor alterations to already high-

performing data points, we aim to refine and 

potentially enhance these points, exploring the 

immediate vicinity for potentially better results. 

During the model's training phase, we dynamically 

adjust the sampling strategy in accordance with the 

iteration count. We segment the iterations into units of 

five: for iterations labeled 0, 2, and 4, we employ local 

sampling; iteration 1 utilizes a medium strategy, and 

iteration 3 is designated for global sampling. Employing 

all three methods in a rotational sequence could 

potentially uncover superior solutions, as it offers a 

balanced approach to exploration and exploitation. 

However, this method is time-intensive. Consequently, 

to strike a balance between efficiency and performance, 

we prioritize local sampling, as it has potentially yielded 

superior results in comparison to other methods. This 

emphasis on local sampling is justified by its potential 

to enhance result efficiency, even though there exists a 

risk of getting trapped in local optima. This approach 

and its efficacy are substantiated by our experimental 

findings. 

 

3.3. Refine Model 

 

The infill criteria are designed to generate candidate 

solutions, and these candidate solutions will be 

evaluated by surrogate model. The models will predict 

the electric intensity for each candidate solution. 

Following this prediction phase, we select the solution 

with the highest predicted electric intensity from each 

model. Consequently, in a single iteration, we may end 

up simulating either one or two solutions, depending on 

the outcomes predicted by the surrogate models. 

These selected solutions are then processed through 

Ansys HFSS to obtain their actual electric intensities. If 

the results from Ansys HFSS do not meet our 

predefined termination criteria. This updated dataset is 

used to retrain the surrogate models, thereby enhancing 

their predictive capabilities for future iterations. This 

iterative process of generating, evaluating, and refining 

solutions ensures a continuous improvement in the 

search for optimal solutions within the specified criteria. 
 

3.4. Framework introduction 
 

Our framework comprises two principal components. 

The first is the surrogate model, which is responsible for 

generating the parameters that will be utilized in 

simulations conducted by the second component, Ansys 

HFSS. Ansys HFSS is a sophisticated 3D high-

frequency structure simulation software, designed to 

simulate electric fields and their interactions with 

physical structures. 

 

In the simulation process, Ansys HFSS generates 

output that includes the electric intensity at each point 

on the observation plane. This output is then processed 

to determine the average electric intensity, which serves 

as the target metric for each data set in our study. 

If the results from the Ansys HFSS simulations not 

meet our established termination criteria the new data 

obtained from these results will be integrated into our 

existing dataset. This integration is a crucial step, as it 

allows for the continuous refinement and improvement 

of the surrogate model. The enhanced model will then 

be better equipped in future iterations to produce more 

accurate parameter predictions for subsequent Ansys 

HFSS simulations, thus creating a cyclic process of 

optimization and refinement until the termination 

criteria are satisfactorily met. 

 

4. EXPERIMENTS 

 

4.1. Experimental Setup 

 

In this section, we will describe the implementation 

detail of the experiment, explain the interaction process 

between the surrogate model and Ansys HFSS, and 

outline all the variable parameters required for the 

simulation. 

 

4.1.1. Interaction Process 

After the surrogate model generates the parameters, we 

apply these parameters by adjusting the Python 

automation script of Ansys HFSS to automatically 

complete all operations in Ansys HFSS. Specifically, 

our automation process includes: 

1) Creating a new project; 

2)  Generating the 3D model of the microwave device; 



3)  Setting the simulation physical parameters 

(material of the device, microwave frequency, etc.); 

4)  Performing electromagnetic field simulation; 

5)  Exporting the simulation results. 

The final step of exporting simulation results from 

Ansys HFSS is in the form of a .fld file. Once the 

surrogate model receives the new simulation results, it 

integrates these results into the dataset, preparing for the 

next round of calculations. 

 

4.1.2. Variable Parameters 

We first describe the specification parameters of the 3D 

model. The 3D model of the microwave device is a 

hollow cube, with the dimensions of the cavity (length, 

width, height) being variable parameters. We install two 

magnetrons, fixed on the top and the back side of the 

device, to provide microwave sources. The wave port 

position of the magnetrons can be adjusted as well. This 

parameter represents the offset of the magnetron from 

the center of the plane. The direction of the wave port 

from the magnetron is a categorical parameters, which 

can be adjusted to either horizontal or vertical. 

Next, we will describe the physical parameters related 

to the simulation. The wave port frequency and phase of 

the magnetron are adjustable. The wave port frequency 

is a categorical parameters with three options: 2GHz, 

2.45GHz and 3GHz, while the wave port phase can be 

continuously adjusted between 0 degrees and 360 

degrees. The material of the microwave device is set to 

copper. 

 

4.1.3. Simulation Results 

We set up a horizontal observation plane at the center of 

the microwave device, which does not possess physical 

properties; its purpose is to capture the electric field 

intensity inside the device. The obtained electric field 

intensity data will be exported to a .fld file. In this file, 

the electric field values on the observation plane are 

organized in a grid pattern, with each points 

representing the electric field intensity at a specific 

location on the observation plane. The spacing between 

these cells is uniformly set to 1 millimeter. We calculate 

the average of the electric field values for all points on 

this grid as an evaluation metric for the study. 

 

4.2. Results 

 

4.2.1. Optimization Impact Assessment 

To demonstrate the efficacy of our proposed method, we 

conducted a comparative analysis by randomly 

sampling parameters and contrasting them with 

optimized parameters. Table 1 shows both the randomly 

sampled and optimized parameters. Note that we run 

around 1,000 iterations to get the result. It becomes 

evident that the application of optimized parameters 

significantly enhances the outcomes. The average 

electric field strength increase about 50%. 

 

4.2.2. Evaluation of Sampling Methodologies 

In the proposed method, we have developed three 

distinct sampling techniques to generate candidate 

solutions. This section aims to demonstrate that 

combining these sampling methods effectively enhances 

performance. For this purpose, we conducted a  

comparative analysis of a mixed version 

incorporating all three methods and the individual 

application of each method over 250 iterations. Fig. 3 

clearly illustrates that the integration of the three 

sampling methods achieves approximately 130,000 V/m, 

whereas utilizing a single sampling method yields a 

maximum of around 80,000 V/m. Note that Fig. 3 

shows the best solution in training dataset.  

Furthermore, it is evident that local sampling 

outperforms both global and medium sampling. The 

primary reason for this enhanced performance is that 

local sampling concentrates on exploitation, which 

involves an intensive search in the vicinity of the current 

best solution to determine if more optimal solutions 

exist. This targeted approach allows for a more thorough 

exploration of promising areas in the solution space, 

leading to potentially better outcomes. 

 

4.2.3. Model Performance Evaluation 

In our proposed method, we have implemented both 

Kriging and KPLS models as surrogate models. This 

section is dedicated to illustrating that the concurrent 

utilization of both models yields superior solutions 

compared to employing a single model. To validate this  

Fig.3 Sampling technique evaluation 
Fig.4 Model performance evaluation 



assertion, we conducted a comparative analysis, 

contrasting the performance of a multi-model approach 

with each individual model over a span of 250 iterations. 

Fig. 4  clearly depicts that the multi-model approach is 

capable of achieving approximately 13,000 V/m, while 

the application of a single model falls short of reaching 

even 10,000 V/m. It is important to note that Fig. 4 

represents the best solutions found within the training 

dataset. 

 

5. CONCLUSION 

 

This study presents a surrogate-based configuration 

global optimization (SCGO) method that optimizes the 

electric field strength in a microwave device. By using 

Multiple Surrogate-Based Global Optimization (MSGO), 

combining Kriging and Kernel Partial Least Squares 

(KPLS) models, the method improves accuracy and 

efficiency. An innovative infill criteria strategy, which 

includes local, medium, and global sampling methods, 

balances global exploration and local exploitation. 

Experimental results show a 50% increase in average 

electric field strength, proving the method's 

effectiveness. The SCGO method offers a robust 

solution for complex optimization problems and is 

applicable to various engineering fields. 
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 Random Parameters Optimized Parameters 

Cavity Length 398.70 mm 322.73 mm 

Cavity Width 359.41 mm 343.44 mm 

Cavity High 463.79 mm 308.14 mm 

Wave port 1 direction Horizontal Horizontal 

Wave port 2 direction Horizontal Horizontal 

Wave port 1 position (X, Y) (99.82mm, 44.75mm) (-0.7784mm, -97.2755mm) 

Wave port 2 position (X, Y) (17.71mm, -12.95mm) (-4.9095mm, 91.1947mm) 

Wave port Frequency 2.0Gz 2.45Gz 

Wave port 1 phrase 195.83° 27.0739° 

Wave port 2 phrase 72.42° -12.5769° 
Avg.  Electric Field Strength 7647.59 V/m 159645 V/m 

Table 1. Random and Optimized Parameters 


