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ABSTRACT 

Micro-expressions (MEs) are fleeting, involuntary facial 

expressions that last only a fraction of a second, often 

revealing a person's true emotions. Detecting and 

analyzing these MEs presents a significant challenge due 

to their brief and subtle nature. In this study, we propose 

an approach that leverages convolutional neural networks 

(CNNs) to train models on widely used micro-expression 

datasets, including CASME II, SAMM, and SMIC. 

These datasets provide a rich source of annotated micro-

expression data, which allows for the development of 

more accurate recognition systems. To further enhance 

the system's performance, we incorporate rule-based 

corrections to address common misclassifications that 

occur during the recognition process. Our experimental 

results demonstrate that this combined approach of 

CNNs with rule-based post-processing yields substantial 

improvements in both accuracy and efficiency, compared 

to traditional methods. These advancements hold great 

promise for practical applications in various fields, such 

as psychological assessments, forensic investigations, 

security monitoring, and human-computer interaction, 

where understanding and interpreting subtle emotional 

cues is crucial for effective decision-making. 

 

Keywords: Micro-expression recognition, Deep learning, 

Convolutional neural networks, Emotion analysis. 

 

1. INTRODUCTION 

Facial expression recognition plays a critical role in 

human-computer interaction by enabling machines to 

better understand human emotions and intentions. 

However, several challenges persist, including the need 

for large datasets, significant computational resources, 

and variations in model performance across different 

environments. This research proposes a novel approach 

that combines Emotion Classification Convolutional 

Neural Network (ECCNN) with an Emotion 

Classification Regular Library (ECRL) to enhance the 

accuracy and efficiency of recognizing seven emotions—

Neutral, Happy, Surprise, Angry, Fear, Disgust, and 

Sad—especially in scenarios with limited sample data. 

Building on the work of Dwijayanti et al. [1], this 

study addresses some of the ongoing challenges in facial 

expression recognition. While deep learning, particularly 

Convolutional Neural Networks (CNNs), has made 

significant advancements, CNNs still face issues such as 

the need for large datasets and high computational power, 

which can hinder real-time applications. Datasets such as 

SMIC (Li et al. [2]), CASME II (Yan et al. [3]), and 

SAMM (Davison et al. [4]) have been key to advancing 

research in micro-expression recognition, providing 

controlled environments to capture subtle facial 

movements, as initially described by Shi et al. [5]. 

Despite these advancements, challenges remain in 

accurately recognizing fewer common emotions like 

"Disgust" and optimizing models for faster processing 

speeds, as highlighted by Hammal [6].  

Traditional facial expression recognition methods 

struggle significantly with micro-expression recognition 

due to the brief and subtle nature of these expressions. 

Conventional techniques often fail to capture these 

fleeting features accurately, leading to frequent 

misclassifications, particularly for rare emotions. 

Furthermore, these methods are computationally 

intensive, resulting in slower processing speeds that are 

not suitable for real-time applications. Therefore, 

improving both accuracy and processing efficiency is 

crucial for the continued progress of this field. 

To overcome these limitations, this paper proposes a 

hybrid approach that combines an ECCNN-based 

emotion classification model with a rule-based system 

(ECRL). Building on the work of Han et al. [7], this 

method aims to address the shortcomings of traditional 

techniques, improving both the accuracy and efficiency 

of emotion recognition. Specifically, the proposed 

approach increases recognition speed by 4-5 milliseconds 

and boosts accuracy by 5-7%, meeting the critical 

requirements of both speed and precision for real-time 

emotion recognition systems. 

The rest of the paper is organized as follows: the next 

section presents the proposed architecture, followed by 

an experimental evaluation in Section 3. Finally, Section 

4 concludes the study with a summary of findings and 

future directions. 



2. PROPOSED ARCHITECTURE 

The proposed architecture combines a Convolutional 

Neural Network (CNN) with a rule-based system to 

improve the accuracy and efficiency of recognizing 

subtle and fleeting facial expressions, particularly for 

real-time applications. The system operates in six stages: 

First, image preprocessing converts color images to 

grayscale, reduces complexity, and enhances facial 

feature visibility through contrast adjustment and edge 

sharpening. Next, face detection uses the Dlib algorithm 

[8] to precisely locate and isolate facial regions for 

focused analysis. Facial image preprocessing then resizes, 

normalizes, and converts these regions to RGB format, 

ensuring standardized input for the CNN. The feature 

extraction stage leverages the Emotion Classification 

Convolutional Neural Network (ECCNN) to process the 

images through multiple layers—convolutional, pooling, 

local region, dropout, and fully connected layers—to 

capture detailed facial features necessary for emotion 

classification. Following this, the rule-based emotion 

classification step applies the Emotion Classification 

Regular Library (ECRL) to correct potential 

misclassifications, enhancing the system’s robustness, 

particularly for less common emotions. Finally, result 

integration combines the CNN outputs with rule-based 

corrections using a decision strategy to optimize emotion 

classification. This hybrid approach boosts both the 

accuracy and efficiency of micro-expression recognition, 

making it well-suited for real-time applications where 

speed and precision are crucial. 

 Fig. 1. Presents the overall system  

research process flowchart. 

The Emotion Classification Convolutional Neural 

Network (ECCNN), shown in Figure 2, is the core 

component of the proposed system and plays a crucial 

role in addressing the challenges of micro-expression 

recognition. The ECCNN is designed to effectively 

detect and extract facial features associated with various 

emotions through several key components. 

The first of these components is the convolutional 

layers, which are responsible for detecting various 

features within facial images, ranging from basic edges 

and textures to more complex patterns tied to specific 

emotions [9]. The architecture includes multiple 

convolutional layers, each followed by a pooling layer to 

reduce dimensionality while retaining essential features. 

The primary operation of each convolutional layer is 

defined by the following equation: 

𝑶(𝒊, 𝒋) = ∑ ∑  𝑰(𝒊 + 𝒎,   𝒋 + 𝒏)𝑭−𝟏
𝒏=𝟎

𝑭−𝟏
𝒎=𝟎 ⋅ 𝑲(𝒎, 𝒏)    (1) 

where O(i, j) is the output feature map at position  

(i, j), I is the input image, K is the convolution kernel of 

size F× F, and m, n are the indices over the kernel 

dimensions. This operation captures essential features 

such as edges and textures within the facial image. 

Max pooling [10] is used to downsample the feature 

maps, effectively reducing computational complexity 

and mitigating the risk of overfitting. Pooling layers play 

a key role in maintaining the spatial hierarchy of features 

while highlighting the most significant ones. The 

reduction in the dimensionality of the feature maps is 

achieved through the following max pooling operation: 

𝑶𝒑𝒐𝒐𝒍(𝒊, 𝒋) = 𝒎𝒂𝒙 {
𝑰(𝟐𝒊, 𝟐𝒋), 𝑰(𝟐𝒊 + 𝟏, 𝟐𝒋),

𝑰(𝟐𝒊, 𝟐𝒋 + 𝟏), 𝑰(𝟐𝒊 + 𝟏, 𝟐𝒋 + 𝟏)
} (2) 

where 𝑂𝑝𝑜𝑜𝑙  is the pooled output, and the operation 

reduces the size of the feature map while retaining the 

most prominent features. As shown in Figure 3,this 

operation involves selecting the maximum value within 

each window of the feature map, thus preserving the most 

significant features while reducing the overall size of the 

feature map. 

Fig. 2. Illustrates the architecture of the 

convolutional neural network (CNN) used for emotion 

classification. 

Fig. 3. Illustrates the schematic diagram of   

the Max Pooling operation. 

While pooling layers are effective for reducing 

image dimensionality, they inevitably lead to some loss 

of information. This drawback is particularly significant 

in micro-expression recognition, where the critical 

features are often subtle and fine-grained. The 

downsampling process can discard these minute details, 

resulting in the model missing important information that 

is crucial for accurate classification. Consequently, each 

additional pooling layer can reduce recognition accuracy 

by approximately 2-4%, as finer features are ignored. 

However, this trade-off results in improved recognition 

speed, with each extra pooling layer reducing processing 

time by roughly 10 milliseconds. 

To address this issue, the system incorporates a 

Local Region Layer, which partitions the feature map 



into smaller, localized regions and applies independent 

convolution operations within each region [11]. The main 

objective of this layer is to capture subtle, localized 

variations in facial features, enhancing the model's ability 

to detect fine-scale changes in micro-expressions. By 

focusing on these smaller regions, the Local Region 

Layer improves the accuracy of micro-expression 

recognition, helping to retain the delicate details that 

pooling layers might overlook. 

 The decision to divide the feature map into a 3×3 

grid is informed by the natural distribution of key facial 

features, such as the eyes, nose, and mouth, which 

roughly divide the face into three distinct regions. This 

grid configuration allows the model to more effectively 

capture localized variations in these critical areas. 

Furthermore, setting the grid size to 3×3 strikes a balance 

between preserving essential facial details and 

minimizing computational load, ensuring efficient 

processing without sacrificing model performance. 

Fig. 4. Illustrates the schematic diagram of  

the residual connection. 

Additionally, a residual connection within this layer, 

as illustrated in Figure 4, helps preserve important 

information from the original input, enhancing the 

model's ability to recognize complex emotional 

expressions. The residual connection combines the 

original input with the output of the localized convolution 

operations, ensuring that crucial features are maintained 

and effectively integrated into the final recognition 

process. 

𝑦 = 𝑥 + 𝑓(𝑥)                               (3) 

where x represents the original input feature map, and f(x) 

represents the output after applying the convolution 

operation to each small region, and y is the resulting 

output feature map. This residual connection ensures that 

the network captures fine-grained details without losing 

the original information, thereby improving the accuracy 

of micro-expression recognition. 

To reduce overfitting and enhance generalization, a 

dropout layer is incorporated into the model. Dropout 

randomly deactivates a fraction of neurons during 

training, forcing the network to learn more distributed 

and generalized features [12]. This helps the model better 

generalize to new, unseen data and mitigates the risk of 

overfitting. During training, each neuron is retained with 

a probability p, and the outputs are scaled by  
1

1−𝑝
  during 

inference. The dropout operation can be mathematically 

expressed as:  

𝑦 =  
1

1−𝑝
 (𝑚 ⊙ 𝑥)                       (4) 

where m is a binary mask vector with values drawn from 

a Bernoulli distribution with probability 1−p, and ⊙ 

denotes the element-wise multiplication. This technique 

forces the network to learn more robust features, reducing 

its dependency on specific neurons. 

 

After feature extraction, the fully connected layers 

process the high-level features to create a feature vector 

that represents the input image [13]. This vector is then 

used for emotion classification. The feature maps are 

flattened into a one-dimensional vector, which is 

subsequently transformed using: 

𝑦 =  𝑊 ⋅  𝑥 + 𝑏                      (5) 

where y is the output feature vector, W is the weight 

matrix, x is the input feature vector, and b is the bias 

vector. This transformation enables the network to 

combine the learned features and produce a final 

classification. In the proposed architecture, the final layer 

of the Convolutional Neural Network (CNN) employs 

the LogSoftmax function to convert the output logits into 

log-probabilities. The LogSoftmax function is 

mathematically defined as: 

 𝑳𝒐𝒈𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝒛𝒊) = 𝒍𝒐𝒈 (
𝒆

𝒛𝒋

∑ 𝒆
𝒛𝒋𝑵

𝒋=𝟏
)                    (6) 

where 𝑧𝑖  represents the logit corresponding to class i. 

This function is employed to ensure numerical stability 

by operating in the logarithmic domain, which mitigates 

potential issues such as overflow that may arise with the 

standard Softmax function. The log-probabilities 

produced by the LogSoftmax function are particularly 

advantageous when combined with the Negative Log 

Likelihood Loss (NLLLoss), as they align directly with 

the requirements of this loss function. The training of the 

proposed model is driven by the Negative Log 

Likelihood Loss (NLLLoss) function, which is ideal for 

classification tasks where the outputs are in the form of 

log-probabilities. The NLLLoss is defined as: 

 𝑵𝑳𝑳𝑳𝒐𝒔𝒔 = − ∑ 𝒚𝒊
𝑵
𝒊=𝟏 ∙ 𝑳𝒐𝒈𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝒛𝒊)         (7) 

where 𝑦𝑖  denotes the true class label, and 𝑧𝑖  represents 

the predicted log-probability for the corresponding class. 

This loss function penalizes the divergence between 

predicted log-probabilities and actual labels, encouraging 

higher probabilities for correct classes. The combination 

of LogSoftmax and NLLLoss ensures stable, well-

calibrated outputs, leading to more accurate predictions. 

To enhance the accuracy of the proposed micro-

expression recognition system, the Emotion 

Classification Regular Library (ECRL) is integrated with 

the CNN. ECRL utilizes a rule-based approach based on 

facial landmark analysis [14], as illustrated in Figure 5, 

to refine the predictions of the CNN and correct 

misclassifications, particularly for less common 

emotions such as "Disgust." These rules are grounded in 



the pioneering work of Paul Ekman, a leading expert on 

human facial expressions. By leveraging Ekman’s 

"Facial Action Coding System (FACS)," which offers a 

systematic framework for categorizing facial movements, 

we developed rules aimed at improving the recognition 

system's accuracy. Additionally, the rules are informed 

by empirical studies and datasets, including SMIC, 

CASME II, and SAMM, and focus on key geometric 

features like Eyebrow Relative Position Change, 

Eyebrow Width Ratio, and Mouth Curvature—critical 

factors for precise emotion classification. 

Fig. 5. Facial landmark localization. 

The relative movement of the eyebrows is calculated 

by considering both the eyebrow width and height, 

normalized according to the overall dimensions of the 

face. This relationship is expressed as: 

        𝐄𝐲𝐞𝐛𝐫𝐨𝐰 𝐑𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝐂𝐡𝐚𝐧𝐠𝐞 =

                                                    
𝐄𝐲𝐞𝐛𝐫𝐨𝐰 𝐖𝐢𝐝𝐭𝐡 𝐚𝐧𝐝 𝐇𝐞𝐢𝐠𝐡𝐭

𝐅𝐚𝐜𝐞 𝐖𝐢𝐝𝐭𝐡 𝐚𝐧𝐝 𝐇𝐞𝐢𝐠𝐡𝐭
     (8) 

A greater change in the ratio indicates a higher 

likelihood of emotions like surprise and fear. The 

eyebrow width ratio is calculated as the ratio of the total 

eyebrow width to the overall width of the face: 

𝐄𝐲𝐞𝐛𝐫𝐨𝐰 𝐖𝐢𝐝𝐭𝐡 𝐑𝐚𝐭𝐢𝐨 =
𝐓𝐨𝐭𝐚𝐥 𝐄𝐲𝐞𝐛𝐫𝐨𝐰 𝐖𝐢𝐝𝐭𝐡

𝐅𝐚𝐜𝐞 𝐖𝐢𝐝𝐭𝐡
    (9) 

A smaller change in the ratio is more strongly 

associated with emotions such as Disgust and Sadness. 

The curvature of the mouth is an important feature for 

differentiating between positive and negative emotions. 

It is calculated as: 

𝐌𝐨𝐮𝐭𝐡 𝐂𝐮𝐫𝐯𝐚𝐭𝐮𝐫𝐞 =
𝐌𝐨𝐮𝐭𝐡 𝐇𝐞𝐢𝐠𝐡𝐭

∣𝐌𝐨𝐮𝐭𝐡 𝐖𝐢𝐝𝐭𝐡∣
        (10) 

A positive mouth curvature indicates an upward 

curve, typically associated with emotions like "Happy," 

while a negative curvature suggests a downward curve, 

often linked to emotions such as "Sad." During prediction, 

ECRL assesses the CNN’s classification using 

predefined rules and makes adjustments when 

discrepancies are detected based on facial landmark 

movements. This process refines the results, improving 

the reliability of the system by combining the CNN’s 

feature extraction capabilities with targeted corrections, 

ultimately leading to more accurate micro-expression 

recognition. 

To enhance the accuracy of the proposed micro-

expression recognition system, the predictions from the 

Emotion Classification Convolutional Neural Network 

(ECCNN) and the Emotion Classification Regular 

Library (ECRL) are combined. As illustrated in Figure 6, 

this integration ensures more robust final emotion 

recognition by applying different decision strategies 

based on the predicted emotion type. 

Fig. 6. Emotion recognition system integration 

flowchart. 

For positive emotions such as "Neutral," "Happy," or 

"Surprise," the system directly accepts the prediction 

generated by the ECCNN without further evaluation by 

the ECRL. This approach takes advantage of the 

ECCNN's high accuracy and efficiency in recognizing 

these emotions, thus avoiding unnecessary computational 

overhead. For negative emotions like "Angry," "Fear," 

"Disgust," or "Sad," the system initiates a secondary 

evaluation with the ECRL to verify the classification 

accuracy. If both the ECCNN and ECRL produce the 

same result, this classification is confirmed as the final 

output. In cases of discrepancies between the ECCNN 

and ECRL predictions, the system prioritizes the 

ECCNN's prediction, as it has been empirically shown to 

provide higher accuracy in most cases. 

In a special case involving the emotion "Disgust," 

ECRL takes precedence over the ECCNN due to the 

limited representation of "Disgust" in the ECCNN 

training data, which increases the risk of 

misclassification. This ensures more reliable recognition, 

as ECRL has demonstrated superior performance for this 

particular emotion. By applying these strategies, the 

system achieves high recognition accuracy with efficient 

processing. The combination of the CNN’s feature 

extraction capabilities and the ECRL’s rule-based 

refinement offers a robust solution for recognizing 

complex emotions, enhancing the system’s adaptability 

and accuracy, especially in challenging or ambiguous 

cases. 

3. EXPERIMENTAL RESULTS  

We conducted a series of ablation experiments on the 

SMIC, CASME II, and SAMM datasets to assess the 

impact of modifying the number of pooling layers in the 

ECCNN model. The results, detailed in Table 1, reveal a 

clear trade-off between recognition time and accuracy. 

Specifically, increasing the number of pooling layers led 

to a reduction in recognition time, measured in 

milliseconds, as expected due to the downsampling effect. 

However, this also resulted in a decrease in accuracy, 

measured as a percentage, indicating that while pooling 

layers reduce computational load and accelerate the 

recognition process, they also cause a loss of critical, 

fine-grained features. This loss of information, 

particularly for subtle facial expressions, diminishes the 



model’s ability to accurately classify emotions, 

especially those involving small variations in facial 

features. These results highlight the importance of 

balancing the number of pooling layers in the network to 

achieve optimal performance—too few pooling layers 

can increase computational demand, while too many can 

sacrifice accuracy by discarding important details. 

To further investigate the model's performance, we 

incorporated a Local Region Layer to focus on capturing 

localized variations in facial features. This layer was 

designed to address the limitations introduced by pooling 

layers, which tend to lose finer details by pooling 

information over larger regions. The results from the 

experiments, shown in Table 2, demonstrate a significant 

improvement in classification accuracy after adding the 

Local Region Layer. The layer's ability to focus on 

smaller, localized facial regions allowed the model to 

capture subtle changes in facial expressions, such as 

small eyebrow movements or slight mouth curvature, 

which are often critical for accurately recognizing micro-

expressions. This enhancement in accuracy underscores 

the importance of preserving local facial information, 

which is particularly vital in the context of micro-

expression recognition, where emotions are conveyed 

through very subtle and quick facial changes. 

While the inclusion of the Local Region Layer led to 

a slight increase in recognition time—due to the 

additional computational steps required for processing 

localized regions—the improvement in accuracy justifies 

its inclusion in the model. In fact, the substantial gain in 

accuracy indicates that the benefit of capturing detailed, 

localized features outweighs the small increase in 

processing time. These findings suggest that for micro-

expression recognition, it is essential to not only optimize 

the computational efficiency of the model but also ensure 

that subtle, localized features are preserved and 

effectively utilized for classification. The combination of 

the ECCNN with the Local Region Layer represents a 

more robust approach, balancing both speed and 

precision, which is crucial for real-time applications 

where both accuracy and processing speed are essential. 

Table 1. Impact of different numbers of pooling layers 

on ECCNN’s recognition time and accuracy.  

Table 2. Comparison of recognition time and accuracy 

with the inclusion of the local region layer. 

The proposed ECCNN model, integrated with the 

Emotion Classification Regular Library (ECRL), was 

subjected to a thorough evaluation across multiple well-

established datasets, including SMIC, CASME II, and 

SAMM. The results, as shown in Table 3, demonstrate 

that the ECCNN + ECRL model significantly 

outperforms other state-of-the-art models, such as 

DRML [15], AlexNet [16], ConvNet [17], and LCN [18], 

in both recognition accuracy and processing time. These 

datasets represent a broad spectrum of facial expressions 

and micro-expressions, providing a comprehensive 

testbed for evaluating model performance. Across all 

datasets, the ECCNN + ECRL combination consistently 

achieved superior accuracy, along with faster recognition 

times, underlining its effectiveness in both real-time and 

high-accuracy applications. 

In particular, the integration of the ECRL with the 

ECCNN contributed to significant improvements in 

emotion recognition, especially for subtle and less 

commonly recognized emotions. For instance, the model 

showed remarkable performance in identifying the 

"Disgust" emotion, which is often challenging due to its 

subtlety and underrepresentation in training data. The 

addition of the ECRL allowed the model to leverage 

facial landmark-based rules that refined the ECCNN’s 

predictions, particularly for these harder-to-detect 

emotions. This made the model more robust, ensuring 

accurate predictions even with limited or imbalanced data, 

which is often a challenge in real-world applications of 

emotion recognition. 

An important aspect of our findings is that the 

integration of ECRL only resulted in a minimal increase 

in recognition time—roughly 0.5 to 1 millisecond. This 

trade-off is negligible compared to the substantial gains 

in accuracy, particularly for underrepresented or more 

complex emotions like "Disgust" and "Fear." The ability 

to improve recognition performance with such a small 

computational cost makes the model highly efficient, 

ensuring it remains practical for real-time systems that 

demand both speed and precision. 

Table 3 further highlights the superiority of the 

ECCNN + ECRL model, particularly in scenarios 

involving data imbalance. Traditional models often 

struggle with data imbalance, where some emotions are 

underrepresented in training datasets. However, by 

incorporating rule-based corrections from the ECRL, the 

ECCNN model was able to mitigate this issue, showing 

improved accuracy even in cases where certain emotions 

were less frequently represented in the training data. The 

rule-based approach of the ECRL helped refine 

predictions by compensating for the data imbalance, 

ensuring that the model did not disproportionately favor 

more common emotions at the expense of rarer ones. 

In summary, the ECCNN + ECRL model not only 

outperforms existing models in terms of recognition 

accuracy and speed but also demonstrates its robustness 

in handling challenges such as limited data, data 



imbalance, and the recognition of subtle emotions. This 

combination of deep learning and rule-based refinement 

offers a powerful, adaptable solution for real-time micro-

expression recognition, making it highly suitable for 

applications in fields like psychological analysis, 

forensic investigations, and human-computer interaction. 

Table 3. Comparison of recognition time and accuracy 

between ECCNN + ECRL and other models.  

4. CONCLUSION 

In this paper, we introduced a micro-expression 

recognition system that combines a Convolutional Neural 

Network (ECCNN) with a rule-based system (ECRL) to 

address the challenges of detecting subtle, fleeting facial 

expressions. Evaluations on the SMIC, CASME II, and 

SAMM datasets demonstrated significant improvements 

in both recognition accuracy and processing efficiency. 

The ECCNN+ECRL model outperformed state-of-the-

art methods like DRML, AlexNet, and ConvNet in terms 

of classification accuracy and speed, showcasing the 

effectiveness of our hybrid approach. 

A key innovation in this work is the use of local 

region layers and pooling layers. The local region layer 

captures fine-grained facial movements crucial for 

micro-expression recognition, while pooling layers 

reduce computational load, ensuring fast, accurate real-

time performance. Additionally, the integration of ECRL 

enhanced the system's ability to accurately recognize 

"Disgust"—a challenging emotion with limited training 

data—by applying facial landmark-based rules to refine 

ECCNN predictions, improving the model's overall 

reliability and accuracy. 
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